Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Ethyl-4-methylpiperidine-2,6-dione

Maya Tutughamiarso^a* and Michael Bolte^b

^aInstitut für Organische Chemie und Chemische Biologie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany, and ^bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany

Correspondence e-mail: tutughamiarso@chemie.uni-frankfurt.de

Received 12 November 2007; accepted 13 November 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.056; wR factor = 0.157; data-to-parameter ratio = 14.3.

The glutarimide ring of the title compound, $C_8H_{13}NO_2$, adopts an envelope conformation. The C atom opposite the ring N atom is displaced by 0.65 (4) Å from this plane. The axial methyl and the equatorial ethyl groups are in a synclinal arrangement [C-C-C-C torsion angle = -63.3 (3)°]. Two N-H···O hydrogen bonds stabilize a centrosymmetric dimer. These dimers are further connected by weak C-H···O hydrogen bonds.

Related literature

For related structures, see: Feibush et al. (1986); Hu et al. (2006).

Experimental

Crystal data $C_8H_{13}NO_2$ $M_r = 155.19$

Monoclinic, $P2_1/c$ a = 11.128 (2) Å

b = 6.6820 (10) Å	
c = 11.311 (2) Å	
$\beta = 98.375 \ (15)^{\circ}$	
$V = 832.1 (2) \text{ Å}^3$	
$\mathbf{Z} - \mathbf{A}$	

Data collection

STOE IPDS II two-circle	8827 measured reflections
diffractometer	1528 independent reflections
Absorption correction: multi-scan	1130 reflections with $I > 2\sigma(I)$
(MULABS; Spek, 2003;	$R_{\rm int} = 0.098$
Blessing, 1995)	
$T_{\min} = 0.945, \ T_{\max} = 0.979$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.056$	H atoms treated by a mixture of
$vR(F^2) = 0.157$	independent and constrained
S = 1.04	refinement
528 reflections	$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
07 parameters	$\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} N1 - H1 \cdots O2^{i} \\ C3 - H3A \cdots O6^{ii} \end{array}$	0.85 (3) 0.99	2.09 (3) 2.57	2.939 (3) 3.272 (3)	173 (3) 128
Symmetry codes: (i) -	-x + 2, -y + 2, -x + 2, -x + 2, -y +	-z + 1; (ii) $-x + 1$	$+2, y+\frac{1}{2}, -z+\frac{1}{2}$	

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97.

We thank Professor Dr E. Egert for helpful discussions.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2486).

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Feibush, B., Figueroa, A., Charles, R., Onan, K.D., Feibush, P. & Karger, B.L. (1986). J. Am. Chem. Soc. 108, 3310–3318.
- Hu, X.-R., Xu, W.-M. & Gu, J.-M. (2006). Acta Cryst. E62, o264-o265.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1991). XP in SHELXTL-Plus. Bruker AXS Inc., Madison, Winscosin, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.

Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$

 $0.54 \times 0.50 \times 0.24$ mm

T = 173 (2) K

supplementary materials

Acta Cryst. (2007). E63, o4743 [doi:10.1107/S1600536807058436]

4-Ethyl-4-methylpiperidine-2,6-dione

M. Tutughamiarso and M. Bolte

Experimental

Single crystals of title compound were obtained by recrystallization of the commercially available 4-ethyl-4-methylpiperidine-2,6-dione from methanol at room temperature.

Refinement

All H atoms were initially located by difference Fourier synthesis. Subsequently the positions of those bonded to C atoms were refined with fixed individual displacement parameters $[U_{iso}(H) = 1.5 U_{eq}(C_{methyl})]$ and $1.2 U_{eq}(C_{secondary})]$ using a riding model with methyl C—H = 0.98 and secondary C—H = 0.99 Å. The H atom bonded to N was refined isotropically.

Figures

Fig. 1. Perspective view of the title compound with the atom numbering; displacement ellipsoids are at the 50% probability level.

Fig. 2. Partial packing diagram of the title compound. Hydrogen bonds shown as dashed lines.

4-Ethyl-4-methylpiperidine-2,6-dione

Crystal data		
$C_8H_{13}NO_2$		
$M_r = 155.19$		
Monoclinic, $P2_1/c$		

 $F_{000} = 336$ $D_x = 1.239 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$

supplementary materials

Hall symbol: -P 2ybc a = 11.128 (2) Å b = 6.6820 (10) Å c = 11.311 (2) Å $\beta = 98.375$ (15)° V = 832.1 (2) Å³ Z = 4

Data collection

Cell parameters from 13160 reflections
$\theta = 3.5 - 25.6^{\circ}$
$\mu = 0.09 \text{ mm}^{-1}$
T = 173 (2) K
Block, yellow
$0.54 \times 0.50 \times 0.24$ mm

STOE IPDS II two-circle- diffractometer	1528 independent reflections
Radiation source: fine-focus sealed tube	1130 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.098$
T = 173(2) K	$\theta_{\text{max}} = 25.5^{\circ}$
() scans	$\theta_{\min} = 3.6^{\circ}$
Absorption correction: multi-scan (MULABS; Spek, 2003; Blessing, 1995)	$h = -13 \rightarrow 13$
$T_{\min} = 0.945, \ T_{\max} = 0.979$	$k = -8 \rightarrow 8$
8827 measured reflections	$l = -11 \rightarrow 13$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.056$	$w = 1/[\sigma^2(F_o^2) + (0.0909P)^2 + 0.0725P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.157$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.04	$\Delta \rho_{max} = 0.33 \text{ e} \text{ Å}^{-3}$
1528 reflections	$\Delta \rho_{\text{min}} = -0.22 \text{ e } \text{\AA}^{-3}$
107 parameters	Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.060 (11)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculat-

ing *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.94659 (18)	0.7726 (3)	0.40135 (17)	0.0354 (5)
H1	1.008 (3)	0.811 (4)	0.450 (3)	0.057 (8)*
C2	0.8476 (2)	0.8979 (3)	0.3819 (2)	0.0360 (5)
O2	0.84861 (15)	1.0581 (2)	0.43594 (16)	0.0475 (5)
C3	0.7416 (2)	0.8331 (3)	0.2919 (2)	0.0369 (6)
H3A	0.7490	0.8965	0.2142	0.044*
H3B	0.6659	0.8832	0.3178	0.044*
C4	0.73052 (19)	0.6045 (3)	0.2736 (2)	0.0342 (5)
C41	0.6354 (2)	0.5648 (3)	0.1622 (2)	0.0409 (6)
H41A	0.5561	0.6179	0.1778	0.049*
H41B	0.6592	0.6411	0.0942	0.049*
C42	0.6186 (2)	0.3456 (4)	0.1250 (2)	0.0491 (7)
H42A	0.6952	0.2929	0.1048	0.074*
H42B	0.5555	0.3354	0.0552	0.074*
H42C	0.5944	0.2680	0.1912	0.074*
C43	0.6928 (2)	0.5058 (3)	0.3847 (2)	0.0408 (6)
H43A	0.6933	0.3600	0.3754	0.061*
H43B	0.6110	0.5502	0.3946	0.061*
H43C	0.7501	0.5439	0.4553	0.061*
C5	0.8558 (2)	0.5270 (3)	0.2520 (2)	0.0384 (6)
H5A	0.8537	0.3789	0.2504	0.046*
H5B	0.8711	0.5732	0.1723	0.046*
C6	0.9598 (2)	0.5927 (3)	0.3434 (2)	0.0357 (5)
O6	1.05502 (15)	0.4985 (2)	0.36586 (16)	0.0459 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
N1	0.0459 (11)	0.0320 (10)	0.0272 (11)	-0.0004 (8)	0.0018 (8)	-0.0018 (8)
C2	0.0477 (12)	0.0332 (11)	0.0272 (12)	0.0010 (9)	0.0051 (9)	0.0024 (9)
02	0.0609 (11)	0.0350 (9)	0.0441 (11)	0.0045 (7)	-0.0001 (8)	-0.0111 (7)
C3	0.0492 (13)	0.0305 (11)	0.0303 (13)	0.0008 (9)	0.0036 (9)	0.0022 (9)
C4	0.0453 (12)	0.0298 (11)	0.0271 (12)	0.0008 (9)	0.0038 (9)	0.0004 (9)
C41	0.0501 (13)	0.0408 (13)	0.0307 (13)	0.0000 (10)	0.0023 (10)	0.0014 (10)
C42	0.0582 (15)	0.0472 (14)	0.0399 (16)	-0.0070 (11)	0.0006 (11)	-0.0084 (11)
C43	0.0523 (14)	0.0369 (12)	0.0338 (13)	-0.0015 (10)	0.0082 (10)	0.0031 (9)
C5	0.0492 (13)	0.0362 (11)	0.0297 (12)	0.0010 (9)	0.0056 (9)	-0.0039 (9)
C6	0.0457 (12)	0.0373 (12)	0.0251 (12)	0.0017 (9)	0.0082 (9)	0.0002 (9)
O6	0.0509 (10)	0.0490 (10)	0.0372 (10)	0.0095 (8)	0.0042 (7)	-0.0047 (8)

Geometric parameters (Å, °)

N1—C2	1.375 (3)	C41—H41A	0.9900
N1—C6	1.388 (3)	C41—H41B	0.9900
N1—H1	0.85 (3)	C42—H42A	0.9800
C2—O2	1.232 (3)	C42—H42B	0.9800
C2—C3	1.505 (3)	C42—H42C	0.9800
C3—C4	1.544 (3)	C43—H43A	0.9800
С3—НЗА	0.9900	C43—H43B	0.9800
С3—НЗВ	0.9900	C43—H43C	0.9800
C4—C43	1.532 (3)	C5—C6	1.501 (3)
C4—C5	1.540 (3)	C5—H5A	0.9900
C4—C41	1.545 (3)	C5—H5B	0.9900
C41—C42	1.528 (3)	C6—O6	1.227 (3)
C2—N1—C6	126.1 (2)	H41A—C41—H41B	107.5
C2—N1—H1	118 (2)	C41—C42—H42A	109.5
C6—N1—H1	116 (2)	C41—C42—H42B	109.5
O2-C2-N1	120.0 (2)	H42A—C42—H42B	109.5
O2—C2—C3	122.36 (19)	C41—C42—H42C	109.5
N1—C2—C3	117.60 (19)	H42A—C42—H42C	109.5
C2—C3—C4	114.54 (18)	H42B—C42—H42C	109.5
С2—С3—НЗА	108.6	C4—C43—H43A	109.5
С4—С3—Н3А	108.6	C4—C43—H43B	109.5
С2—С3—Н3В	108.6	H43A—C43—H43B	109.5
С4—С3—Н3В	108.6	C4—C43—H43C	109.5
НЗА—СЗ—НЗВ	107.6	H43A—C43—H43C	109.5
C43—C4—C5	110.35 (18)	H43B—C43—H43C	109.5
C43—C4—C3	109.99 (19)	C6—C5—C4	114.67 (19)
C5—C4—C3	107.30 (18)	C6—C5—H5A	108.6
C43—C4—C41	111.00 (18)	C4—C5—H5A	108.6
C5—C4—C41	109.97 (18)	C6—C5—H5B	108.6
C3—C4—C41	108.14 (18)	C4—C5—H5B	108.6
C42—C41—C4	115.51 (19)	H5A—C5—H5B	107.6
C42—C41—H41A	108.4	O6—C6—N1	119.6 (2)
C4—C41—H41A	108.4	O6—C6—C5	123.3 (2)
C42—C41—H41B	108.4	N1—C6—C5	117.05 (19)
C4—C41—H41B	108.4		
C6—N1—C2—O2	-177.2 (2)	C3—C4—C41—C42	176.0 (2)
C6—N1—C2—C3	1.7 (3)	C43—C4—C5—C6	-68.7 (2)
O2—C2—C3—C4	-155.4 (2)	C3—C4—C5—C6	51.1 (2)
N1—C2—C3—C4	25.7 (3)	C41—C4—C5—C6	168.52 (19)
C2—C3—C4—C43	70.0 (2)	C2—N1—C6—O6	177.2 (2)
C2—C3—C4—C5	-50.0 (2)	C2—N1—C6—C5	-0.8 (3)
C2—C3—C4—C41	-168.61 (18)	C4—C5—C6—O6	154.5 (2)
C43—C4—C41—C42	-63.3 (3)	C4—C5—C6—N1	-27.7 (3)
C5-C4-C41-C42	59.1 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A	
N1—H1···O2 ⁱ	0.85 (3)	2.09 (3)	2.939 (3)	173 (3)	
C3—H3A···O6 ⁱⁱ	0.99	2.57	3.272 (3)	128	
Symmetry codes: (i) $-x+2$, $-y+2$, $-z+1$; (ii) $-x+2$, $y+1/2$, $-z+1/2$.					

Fig. 2